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THE MINIMUM DISCRIMINANT 
OF TOTALLY REAL ALGEBRAIC NUMBER FIELDS 

OF DEGREE 9 WITH CUBIC SUBFIELDS 

HIROYUKI FUJITA 

ABSTRACT. With the help of the computer language UBASIC86, the minimum 
discriminant d(K) of totally real algebraic number fields K of degree 9 with 
cubic subfields F is determined. It is given by d(K) = 16240385609. The 
defining equation for K is given by f(x) = x9 - x - 9X7 + 4x6 + 26x5 - 

2x4 - 25X3 - X2 + 7x + 1 , and K is uniquely determined by d(K) up to Q- 
isomorphism. The field K has the cubic subfield F with d(F) = 49 defined 
by the polynomial f(x) = X3+ x2- 2x - . 

1. INTRODUCTION 

Let K be a totally real algebraic number field of degree n with discriminant 
d(K), and r, be the number of real conjugate fields and 2r2 the number of 
complex conjugate fields, so that we have n = r1 + 2r2 . 

It is an important problem to determine the minimum discriminant d(K) 
and the corresponding field K for each pair (ri, r2). 

When n < 8, for all signatures (ri, r2) the field K with minimum discrim- 
inant d(K) is known. In the case n = 8, only the totally real case (i.e., r2 = 0) 
and the totally complex case (i.e., r2 = 4) have been determined (Pohst [1, 2], 
Pohst, Martinet, and Diaz y Diaz [4], Diaz y Diaz [1 1]). 

In this paper we shall treat totally real fields of degree 9 (i.e., n = 9, r2 = 0). 
There are two cases. The first is when K has a cubic subfield, and the other is 
when K does not have any such subfields. Since it seems that the latter case is 
harder than the former, in this paper we shall deal only with the former case. 
We prove the following main theorem. 

Theorem 1. Let K be a totally real algebraic number field of degree 9 with a 
cubic subfield F such that the discriminant d(K) satisfies 

d(K) < 16983563041. 

Let f(x) = x9 + a1x8 + a2x7 + a3X6 + a4X5 + a5x4 + a6x3 + a7X2 + a8x + a9 be 
a defining equation for the field K. Then the complete list of such fields K is 
given as follows: 
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a1 a2 a3 a4 a5 a6 a7 a8 a9 d(K) d(F) 

-1 -9 4 26 -2 -25 - 1 7 1 16240385609 49 

3 -7 -14 17 18 -13 -8 3 1 16440305941 229 

-1 -8 7 21 -15 -20 10 5 -1 16983563041 361 

Moreover, for each discriminant d(K) listed above, the field K is uniquely 
determined up to Q-isomorphism. 

In order to prove Theorem 1, we do the following: 
(1) First we determine an upper bound dmax and a lower bound dmin for 

the discriminant d(K). 
(2) Let F be a cubic subfield of K. It is known that 

(1) d(K) = d(F)3N(D(K/F)), 

where N(-) is the norm of F/Q, and D(K/F) is the relative discrim- 
inant of K/F. So we have 

(2) d(F) < (dmax)"3. 

For each field F, we determine all fields K with d(K) < dmax such 
that K contains F as a subfield. 

We must use a computer in order to calculate the discriminants, determi- 
nants, coefficients of polynomials and the other data. Since these values can be 
greater than 1014, we cannot calculate them with commonly used computer lan- 
guages (for example FORTRAN, PASCAL, C). So we use the computer language 
UBASIC86 running on the personal computer NEC PC-9801 series. UBASIC86 
is a high-precision BASIC, which is an excellent public-domain software writ- 
ten by Y. Kida [9]. We use the version 8.12 (October 1990). UBASIC86 can 
calculate with up to 2600 digits for integers and real numbers, and up to 2600 
digits total for the real and imaginary parts of complex numbers. Since it does 
the job faster than the familiar languages, UBASIC86 is best for our purpose. 

2. CUBIC SUBFIELDS 

Let K be a totally real algebraic number field of degree 9 with discriminant 
d(K). We determine an upper bound and a lower bound for the discriminant 
d(K). A. Odlyzko [8] supplied a table of triples (A, B, E) and gave the fol- 
lowing lower bounds for d (K): 

(3) ArlB2r2e-E < d(K), 

where e is Euler's constant, the base of the natural logarithms. One of them, 
which we will use, is given as follows: 

(4) A = 29.534, B = 14.616, E = 8.2267. 

In our case (ri = 9, r2 = 0) it follows by (3) and (4) that 

(5) 4392565450.664669 < d(K). 

So we take the lower bound dmin = 4392565451. 
Let Q(C,m) be a cyclotomic field with mth root of unity C;m and Q(C,m)+ be 

the maximal real subfield. In the case m = 19, we have [Q(;lg)+ : Q] = 9 and 
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TABLE 1 

b1 b2 b3 d(F) b, b2 b3 d(F) b, b2 b3 d(F) bI b2 b3 d(F) 

1 -2 - 1 49 1 -7 3 788 1 -8 3 1425 1 -9 -10 1957 

0 -3 1 81 0 -6 1 837 0 -11 12 1436 0 -8 1 2021 

1 -3 -1 148 1 -8 10 892 1 -10 7 1489 1 -10 6 2024 

1 -4 1 169 0 -7 4 940 1 -9 5 1492 0 -11 11 2057 

0 -4 1 229 1 10 -8 961 1 -7 -4 1509 0 -13 4 2089 

1 -4 -3 257 1 -6 -1 985 1 -7 -1 1524 1 -11 8 2101 

1 -4 -2 316 1 -6 -3 993 1 -9 -11 1556 1 -8 -5 2177 

1 -4 -1 321 1 -6 -2 1016 1 -7 -2 1573 1 -13 122213 

1 -6 -7 361 0 -8 6 1076 0 -9 7 1593 0 -14 182228 

1 -5 1 404 1 -9 -12 1101 0 -12 14 1620 1 -8 -1 2233 

1 -5 -4 469 0 -7 3 1129 1 -8 2 1708 0 -9 5 2241 

0 -5 1 473 1 -7 -6 1229 1 -11 -16 1765 1 -13 -1 2292 

1 -5 -3 564 1 -8 -9 1257 1 -12 -8 1772 1 -14 14 2296 

1 -6 2 568 0 -10 10 1300 1 -8 -7 1825 1 -8 -2 2300 

0 -6 3 621 0 -11 2 1304 1 -14 8 1849 0 -12 132349 

0 -7 5 697 0 -7 1 1345 1 -9 4 1901 1 -15 162429 

0 10 11 733 1 -12 11 1369 1 -10 -13 1929 1 -10 5 2505 

0 -6 2 756 0 -8 5 1373 1 -8 1 1937 1 -9 2 2557 

1 -6 1 761 1 -10 -14 1384 0 -8 2 1940 

1 -6 -5 785 1 -7 -5 1396 0 -9 6 1944 

d(Q(Cj9)+) = 198 = 16983563041. So we have the upper bound 

dmax = 198 = 16983563041. 
It is sufficient to determine all fields K such that 
(6) dmin = 4392565451 < d(K) < dmax = 16983563041. 
By (2), we need all cubic real fields F with the discriminants 

d(F) < [m a3x3 = 2570. 

Let f(x) = x3 + b,x2 + b2x + b3 be a defining equation for the field F. Then 
the complete list of such fields F is given as in Table 1. The integral basis is 
given by 1, a, (a + a2)/2 in the cases d(F) = 961, 1304, 1772, 1849, 2089, 
and by 1, a, (1 + a2)/2 in the case d(F) = 2292, and by 1, a, a2 in the 
remaining cases. 

3. CUBIC EXTENSIONS OF CUBIC SUBFIELDS 

In this section we determine all totally real algebraic number fields K of 
degree 9 satisfying (6) which are cubic extensions of the cubic fields F given 
in Table 1. 
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Let K be an algebraic number field and F be a subfield of K. Let p be a 
Q-isomorphism of K, a be a Q-isomorphism of F and PIF be the restriction 
of p to F. Then the a-trace is defined by 

Tra, K/F (9)= E P6 (6EK). 
p 

PIF=O 

The following theorem is useful in finding a field K which is an extension 
of its subfield F. 

Theorem 2 (Martinet [5]). Let K be an algebraic number field of degree n, F 
be an algebraic number field of degree n' and K be an extension of F with 
degree m. Then there exists 0 E OK, 0 ? F, such that 

Z < - Z|TrU,K/F(6)12 + d(K) 1/(n-n') 

where 0(i) are conjugates of 0. Further, if 0 satisfies this inequality, then 0+3, 
for any 3 E F, satisfies it also. 

Let F be a cubic field and K a cubic extension of F. Let {ia = 1, a2, 03} 

be a Q-isomorphism of F, and {1, 3(1), e(1)} be an integral basis of F, and 
{a(i), eiU)} (j = 2, 3) be the conjugates. Then, using Theorem 2, we have the 
following inequality for some 0 E OK, 0 V F: 

9 
1 

3 
~~~~~~~198 

16 
6416 

(7) Z10( )I2 < Z(Tra K/F(0))2 + 33d(F) x (64)/ 

We put 

198 A1/6 /64A 1/6 

(33d(F)) ( 3) 

Hence, 0 is a root of an irreducible polynomial f(x) E Z[x] which decom- 
poses in OF[X] into a product of three conjugate irreducible polynomials, say, 
f(l)(X), f(2)(X), f(3)(x). We use the following notation: 

f(x) = x9 + a1x8 + a2x7 + a3X + a4X 5+ a5x4 + a6x3 + a7X2 + a8x + a9 

(ai E Z, I < i < 9), 

f(l)(X) = x x3 + a(I)x2+ a2l)x + a31) (ail) E OF, I < i < 3), 

Ef(2) (x) = x3 + a(2)x2 ( (2)x + a(2) (a(2) = a2 (a1) 1 < i < 3), x +2 3?a3 
f (3) (x) = x3 + a(3) x2 + a(3)x + a(3) (a3) = 03 (a(1)), I < i < 3). x a2 ?3 (1 (a ,1??) 

Clearly, we have Tra,,K/F(0) = -a(i) (j = 1, 2, 3). 
We order the roots 0(i) (1 < i < 9) of f(x) such that 0(I), 0(2), 0(3) are 

the roots of f(l)(x), 0(4) 0(5), 0(6) are the roots of f(2)(x) and 0(7 , 0(8), 
0(9) are the roots of f(3) (x) . For each natural number j we consider the power 
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sums 

9 

Sj = (i), 
i=l1 

s5) = a(1)J + a(2)J +0(3) 

2) = a(4)1 + a(5)J + 0(6), 

3) =0(7)1 + 0(8)J + 0(9). 

Clearly, s51), s52), and s53) are conjugates in F and satisfy 

9 

S1 = s1) +52) +S(3) ISI < _32 + )1 + 1 (3), < E0(i)j 
i=l1 

We determine the set of all coefficients (a(i), a(i), a3i)) of f(i)(x) (i = 1, 2, 3). 
We put a51) = ajo +aj(1) + aj2(i) (ajo, aj1, aj2 E Z, i, j = 1, 2, 3). Since 

Tr,,K/F(f) = 3f, fl E F, and changing 0 to -0 or 0 + , / E F, we may 
assume without loss of generality that 

(8) a1o, all, al2 = 0 or 1 or 2. 

By (7), 
3 

S2 < 3 Z(Tra,K/F(0))2 + T2 = T3. 
i=l 

By Siegel [6], we have 14 < S2. Since S2 = s_) + 5(2) + 523),we have 

? < s21' , 522) 52s3) < T3. 

So we have 

(9) - (T3-a <a(') l(- (-)2a (i= 1,2,3). (9) ~~2 12 2ai 2 I -l 

By the inequality of the geometric and arithmetic means, we have 

(10) (a) (a 2 ) 3/2 (i= 1, 2, 3). 

We put 

1 )2 a ~(i) (i) 2 2ai ) 3/2 
1 ~ ~ ~ a1~1 )2 2 2a 2 3) Y2i = --(T3-a(), X2i 2 X3i= 3 ) (i=1,2,3). 

We first treat the case that we can take {1, a, a2} as Z-basis of OF, i.e., 

P() = a(') , (') = (i)2 (i =1, 2, 3, a(') < a(2) < at(3)). 

From the inequalities (8)-(10), we have the following inequalities for the inte- 
gers a10, a1,a12: 

(I11) 0 < alo, all, a12 < 2. 
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For a20, a2l, a22, we have the following inequalities: 

1 (Y21- X22 X21 -Y23 

(12) a(2) - a(3) a(1) - a(2) a(1) - a(3) 

(1 (X21 -Y22 Y21 -X23 
? a22 ? a (2) - a (3) a(1) - a(2) -a(1) - a3 

X21 - Y22 a22(a(l) + a(2)) 
a(1) - a(3) -a 

(13) | < a2 < a(1 -X(2) -a22(a(l) + a 2)), 

X(2) - Y(23) _ a22(a(l) + a(3)) 

< a2l < Y(1)- X(3) -a22(a(l) + a(3)), 

Y21 - a2la(l) - a22a(1)2 < a2O < X21 - a2la(l) - a22aCf( 

(14) Y22 - a2la(2) - a22a(2) < a20 < X22 - a2la(2) - (2) 

Y23 - a2la(3) - a22a(3) < a2J < X23 - a2la(3) - a22a(3)2 

For a30, a3l, a32 we have the following inequalities: 

(15) 1a321 < (2) _(3) ( X31 + X32 + X31 + X33 

X31 + X32 _ a32(a(l) + a(2)) 
a(1) - a(2) - a32(a + ) 

< a3l < - X31 + X32 a32 ((') + a (2) ) 

16 -X31 - a3la(l) - a3a(1) - 
a< -) - a32(a2), (16) 

~~~X31 +X33 _ a32(a(l) + a(3)) 
a(l) - a(3) 

al -X31 + X33 a3al)+a3) 
a 

31? (1) - a(3)-a3(1)+a)) 

(1) -x - a31a(2) - a32a(2) < a30 < x32 - a31a(2) - a32a(2) 

(17) -X3{ - a3i a3 - a32a(1) < a30 < X32 - a3la(3 - a32a(3 

- a3la~3 - a32a3 <? a30 < X33 - a3l a~ - a32a~3 

In the remaining two cases we can take {1, a, (1 + a2)/2}, or {1, a, 
(a + a2)/2} as a Z-basis of OF. Also in these cases, from the inequalities 
(8)-(10) we get the inequalities for a10, aII, a12, - 2 , a32. 

Since K is totally real, we have 

(I) 5(i) 5(i) s0 1 S2 
(18) SWi SWi s(i) > O (i = 1 , 2, 3). 1 S2 S3 

SW (i S 

By the inequality of Newton, 

(19) 3a(i)a(1) < a(i)2 (i = 1, 2, 3) 

The following theorem is useful to determine the discriminant d(f) of a 
polynomial f(x) and to check that f(x) has only real zeros. 
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Theorem 3 (Pohst [2]). Let f(x) = x +a, x1- +* *++a, E R[x] bean irreducible 
polynomial. Then f(x) has only real zeros if and only if the symmetric matrix 
A = (aij) with entries 

[n/2] 

aij = j(n - i)aiaj - n E (2k + i - j)ai+kaj-k 
k=1 

(i,j=1,...,n-1; i>j; ao=1; am=Oifm>norm<O) 
is positive definite. The discriminant d(f) of f(x) is given by 

d(f) = n2-n det(A). 
From Theorem 3 we have the matrix A given by 

12a(i) - 6a1') a(i)a2i) 
- 

9a(i) (1 ( 2a1 2 6a 1 2 3 (i = 1,~2, 3). 
a(i)a(1) - 9a(i) 2a i)2 - 6a(i)a(i)/ 

So we have the following inequalities: 

(20) 2a(i) - 6a(i) > 0, det(A) > 0 (i = 1, 2, 3). 1 2 ' 

By the inequalities (1 1)-(20), we determine the set of (alo, all, a12 , a20 , a2l, 
a22, a30, a3l , a32) and the set of all coefficients (a(i), a4i), a0i)) of f(i)(x) 
(i = 1, 2, 3). Since f(x) = f(l)(X)f(2)(X) f(3)(X), we determine the set of all 
coefficients (aI, a2 , a3 , a4 , a5, a6 , a7 , a8 , a9) of the polynomial f(x). 

We examine the irreducibility of the polynomial f(x). We find the zeros 
0(i) (1 < i < 9) of f(x) by Newton's method. If f(x) is reducible, then 
f(x) is divisible by a first-degree polynomial or a cubic polynomial. Hence, if 
f(x) does not satisfy the following two conditions (21) and (22), then f(x) is 
irreducible. 
(21) There is a 0(i) such that 0(i) E Z. 

(22) There are 0(i) and 0(i) and 6(k) such that 0(i) + 0(J) + a(k) 

(22) 6(i)6(j) + 6(j)6(k) + 6(k) 0 (i) and 0(i) 6(j) 6(k) E Z. 

Then we determine the set of all coefficients (al, a2, a3, a4, a5, a6, a7, 
a8, a9) such that f(x) is irreducible. We denote by Ni the number of such 
polynomials f(x) for each cubic field F. Then we have Table 2. 

TABLE 2 

d(F) Ni d(F) Ni d(F) Ni d(F) Ni d(F) Ni 
49 4237 404 20 761 6 1229 4 1620 2 
81 714 469 18 785 8 1304 6 1772 2 

148 194 473 8 788 4 1345 4 1929 2 
169 144 564 6 892 4 1373 4 1937 2 
229 78 568 4 940 2 1384 2 2101 2 
257 36 621 2 993 2 1489 2 2233 2 
316 28 697 2 1016 2 1524 2 2300 4 
321 30 733 8 1076 4 1556 2 2349 2 
361 30 756 4 1129 2 1593 6 

For all the remaining cases we have Ni = 0. 
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4. MINIMUM DISCRIMINANT OF THE TOTALLY REAL FIELDS 

OF DEGREE 9 

Finally, we determine the minimum discriminant d(K) of the fields K ob- 
tained in ?3. Using Theorem 3, we obtain the discriminant d(f) of each poly- 
nomial f(x) found in ?3. In general, d(f) is not equal to d(K); it is known 
that d(f) = m2d(K) (m > 0 E Z). So we shall determine m. We decompose 
d(f) = m2 m2d(F)3 , where m2 is squarefree. If f(x) satisfies the inequality 

(23) m2d(F)3 > dmax, 

then we can exclude such f(x). We denote by N2 the number of f(x) such 
that f (x) does not satisfy (23). Then we have Table 3. 

TABLE 3 

d(F) N2 d(F) N2 d(F) N2 d(F) N2 
49 648 169 18 321 4 1229 2 
81 60 229 16 361 6 1937 2 

148 24 257 8 473 2 

For all the remaining cases we have N2 = 0. 
In these cases we check whether pj(d(f)/d(K)) or p t (d(f)/d(K)) for all 

primes p such that pIm I. In order to do this, the following theorem is useful. 

Theorem 4 (Zassenhaus [3]). Let F be an algebraic numberfield, OF be the 
ring of integers in F. Let f (x) = xn + a,xn-I + + an (ai E OF, 1 < i < n) 
be an irreducible polynomial over F with the discriminant d(f) and a be a 
zero of f(x) and K = F(a) be an extension of F with degree n. Let the 
decomposition of the ideal (d(f)) in OF be as follows: 

so s 

d(f) = fpe I| Pi (ei > 1, 1 < i < so; Pi distinct prime ideals). 
i=1 i=so+l 

Let 

f (x) j fJ (X)e, (mod pi) (1 < i < sO) 

be an irreducible factorization of f(x) modpi. We define di(x), gi(x), and 
hi(x) by 

di(x) = J7Jif(x), gi(x) = IIfiJ(x)e, -1 

7rihi(x) = (di(x)gi(x) - f(x))i in OF, 

where 7ri E pi, Xr ? p2, and ii ? pi. Then p{ t (d(f)/d(K)) (1 < i < so) if 
and only if G.C.D. (di(x), gi(x), hi(x)) = 1 (modpi), andfor pi (so + 1 < i < 
s) we have pi { (d(f)/d(K)). 

Using this theorem, we find all primes p such that pImI and p{r(d(f)/d(K)). 
Then, if p2vp( (m,l).. 2vp (m) dmax, where , P The, i pi ...p1 'M2d(F)3 > d,,x5weepilm1 { i (d(f)/d(K)) 
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(i = 1, ..., j) and 2vpi (iM) is the largest power of p dividing mIn, then we 
can exclude f(x). 

We apply Theorem 4 in the case f(x) = x9 + 2x8 - 8x7 - 14X6 + 22x5 + 
30x4-24x3-20x2+ Ox+2, d(f)= 522901049600 = 1483x 22x 52 x 1613, 
d(F) = 148, and ml =2 x 5. If p =2, then 

f(x) x9 (mod2), d(x) = x, g(x) = X8, 

h(x) = -X8 + 4x7 + 7x6 - l1x5 _ 15x4 + 12x3 + lOx2 - 5x - 1. 

Since G.C.D.(d(x), g(x), h(x)) = 1 (mod 2), we have 2 t (d(f)/d(K)). If 
p = 5, then 

f(x) (x2+x+2)2(x2+2x- l)(x3-2x2+2x+2) (mod5), 

d(x) = (x2 + x + 2)(x2 + 2x - 1)(x3 - 2x2 + 2x + 2), g(x) = (x2 + x + 2), 

h(x) = 2x7 +4x6 - 3x5+ lOx3+ lOx2 -2x -2. 

Since G.C.D.(d(x), g(x), h(x)) = 1 , we have 5 t (d(f)/d(K)). Consequently, 
m = 1, d(K) = d(f) = 529010496600 > dmax and we exclude f(x). By this 
method we can exclude 602 cases. 

Using the Dirichlet Discriminant Theorem, we have the following proposi- 
tion. 

Proposition 1. Let K be an algebraic number field of degree 9 and F be its 
subfield of degree 3. Let p be a prime number such that p ramifies in K and 
(p) is a prime ideal in F. We denote by vp (m) the p-index of m (i.e., pvp(m)Im 
and pvp(m)+l { m). Then, if p $& 2, 3 then vp(d(K)) = 3 or 6, if p = 2 then 
vp(d(K)) > 6, if p = 3 then vp(d(K)) = 3 or > 9. 

Since the proof is easy, we shall omit it. 
We apply Proposition 1 in the case f(x) = x9 - x8 - 1 lx7 + 12x6 + 36x5 - 

41X4 -3lX3 + 33X2 + 2x - 1, d(f) = 119414482370560 = 215 x 5 x 151 x 1693, 
d(F) = 169, ml = 128 = 27, and d(f)/m2-= 7288481590. 

The ideal (2) is a prime ideal in F. Since 217288481590, we have 2ld(K) 
and 2 ramifies in K. We have d(K) > 25 x 7288481590 > dmax. So f(x) is 
excluded. By this method we can exclude 6 cases. 

Proposition 2 (Takeuchi [7]). Let K be an algebraic number and F be a sub- 
field. Let f(x) = xn + alxn-i + - * - + an E OF[x] be the defining polynomialfor 
K over F. Let p be a prime ideal of OF. If plai (m < i < n) and p2 t an, 
then the ramification index of p for K/F is at least n - m. 

We apply Proposition 2 in the case f(x) = x9 + 5X8 - 2x7 - 37X6 - 20x5 + 
78X4+52x3-4OX2-16x+8, d(f) = 20181511264415744-= 28x65449x493, 
d(F) = 49, m1 = 512= 29, and d(f)/m2 = 7700009401. 

We know that F = Q(a), where a is a zero of x3 + x2 - 2x - 1. Then 
X3 + (1 + a2)X2 + (-6 + 2a2)x + 2 - 2a - 2a2 is an irreducible polynomial of K 
over F. Since the ideal (2) is a prime ideal in F, we see that 21(-6 + 2a2), 
21(2 - 2a - 2a2) and 22 t (2 - 2a - 2a2). So 2 ramifies in K. By Proposition 
1, we have d(K) ? 26 x 7700009401 > dmax. So f(x) is excluded. By this 
method we can exclude 106 cases. 



810 HIROYUKI FUJITA 

TABLE 4 

d(F) Nk 
16240385609 60 
16440305941 10 
16983563041 6 

We denote by NK the number of f(x) such that the discriminant d(K) of 
the field K given by f(x) satisfies (6). Then we have Table 4. 

To determine if two fields K with the same d(K), but given by different 
polynomials f(x), are isomorphic, we use the method of Takeuchi [7]. Conse- 
quently, we see that the fields K are uniquely determined up to Q-isomorphism. 
So the proof of Theorem 1 is completed. 
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